

SUSTAINABLE FIBERS BASED ON **RECYCLED PET**

M. Silva¹, B. Sampaio¹, G. Saft¹, C. Zoraida¹, L. Ferreira¹, R. Reis¹

¹PIEP – Center for Innovation in Polymer Engineering, University of Minho



Financiado pela União Europeia

NextGenerationEU

OUR COMPANY //

PIEP is a technological interface center that **promotes the connection between academia, and industry**, through the development of polymer-based systems and solutions with a multisectoral scope.

PIEP offers testing services, failure analysis, and develops new materials, products, and processing technologies, all with a focus on sustainable principles.

Topics to be covered

01 Background

Project;
Textile industry;
rPET and Bio-PET

02 Goal

03 Strategy
04 Experimental Results
05 Conclusion

28 JUNE 2024 PRAGUE

POLYMERS FOR SUSTAINABLE FUTURE 2024

LILL ARD BARKA THE TAR - AR - AR ANTICITY - A ANTICITY

PRR Plana de Recuperação e Resiliência

RECPET PROJECT

Part of the <u>SUSTAINABLE PLASTICS</u> initiative to promote a Sustainable Plastics sector in Portugal

Main Project's Goal:

Valorization of recycled PET (rPET) and bio-PET for the development of non-woven textiles for the automotive and medical industries.

Consortium:

PET^[1]

Convenience:

- Versatility;
- Chemical and thermal stability;
- Non-toxic;
- Lightweight;
- Durability;
- Low cost
- Raw materials from fossil-resources

60 **O** billion plastic bottles sold by the end of 2021^[4]

^[1] Chairat, S., Gheewala, S. H. (2023). Life cycle assessment and circularity of polyethylene terephthalate bottles via closed and open loop recycling, Environmental Research, 236 (1), 116788. ^[2] Stubbe, B., Van Vrekhem, S., Huysman, S., Tilkin, R.G., De Schrijver, I., Vanneste, M. (2024). White Paper on Textile Fibre Recycling Technologies. Sustainability, 16(2):618. ^[3] Ali S.S., Abdelkarim E.A., Elsamahy T., Al-Tohamy R., Li F., Kornaros M., Zuorro A., Zhu D., Sun J. (2023). Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environ Sci Ecotechnol. 19(15):100254. ^[4] Barletta, M., Aversa, C., Puopolo, M., Vesco, S. (2019). Extrusion blow molding of environmentally friendly bottles in biodegradable polyesters blends. In (Vol. 77): Elsevier BV.

Severe environmental impact^[2,3]:

Fossil-fuel dependency (non-renewable natural resource)

Short lifetime and waste accumulation

^[5] Majumdar, A.; Shukla, S.; Singh, A.A.; Arora, S. (2020) Circular fashion: Properties of fabrics made from mechanically recycled poly-ethylene terephthalate (PET) bottles, Resources, Conservation and Recycling, 161, 104915. https://doi.org/10.1016/j.resconrec.2020.104915 ^[6]Sun, G.; Cao, X.; Wang, Y.; Sun, X.; Chen, Q. (2024). Comparative life cycle assessment of two different waste materials for recycled fiber. Resources, Conservation and Recycling, 205: 107518. https://doi.org/10.1016/j.resconrec.2024.107518. ^[7]Gojic, A.; Bukhonka, N.. (2023). Recycled Textile Fibers and Materials – Current State and Development Perspectives. Conference Proceedings ICPAE 2023 At: Zrenjanin, Serbia

• Textile industry: Important role in global economy

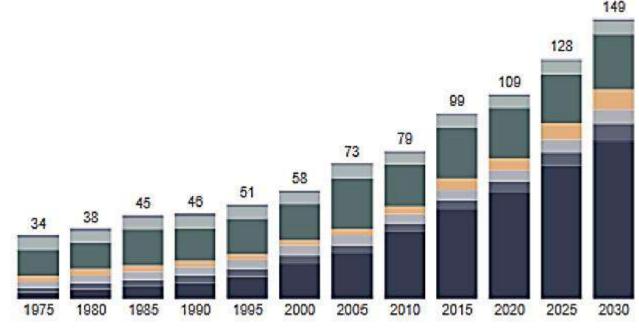


Figure 1 – Fiber production^[7]

Global textile industry facing environmental problems^[6]

One of the most used polymers in textile

fiber industry is **PET**^[5]

Background

Global fiber production (million tonnes)1

- Polyamide (nylon)
- Synthetics, other
- MMCF
- Cotton
- Plant-based, other
- Wool
- Animal, other
- Down
- Silk

European Commission: Regulations to reduce waste and promote circular economy approaches^[8]

Materials: Substitutes for traditional plastics: **recycled PET and bio-based** plastics ^[9]

Recycled PET:

Recycled PET (rPET): produced by processing used PET products, such as plastic bottles, into new material, including fibers

Bio-based PET:

Bio-based are made with partially or totally renewable resources instead of fossil feedstock^[3]

^[8] García-Velásquez, C.; van der Meer, Y. (2022). Can we improve the environmental benefits of biobased PET production through local biomass value chains? – A life cycle assessment perspective. Journal of Cleaner Production, 380(2): 135039, https://doi.org/10.1016/j.jclepro.2022.135039.

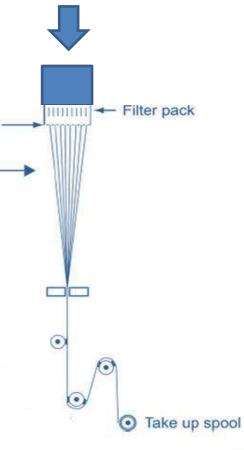
^[9] Ivanović, T.; Hischier, R.; Som, C. (2021). Bio-Based Polyester Fiber Substitutes: From GWP to a More Comprehensive Environmental Analysis" Applied Sciences 11(7): 2993. https://doi.org/10.3390/app11072993

O2 Goal

Sustainable microfibers made of rPET and bio-PET, with improved overall performance for non-wovens

- Antimicrobial
- Soft-Touch
- rPET flakes as simple as possible in terms of plastic raw material selection

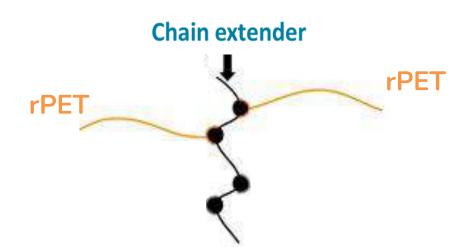
• Development of sustainable fibers


rPET + bio-PET + Additives

Spinneret -----

Quench air -

Screw-extruder


Financiado pela União Europeia NextGenerationEU

Development of compositions

During recycling and reprocessing, <u>PET undergoes chemical, mechanical</u>, thermal and oxidative degradation, which limits its use in many added-value applications^[10]

This problem arises when recycled PET derived from different sources ^[10]

Development of compositions

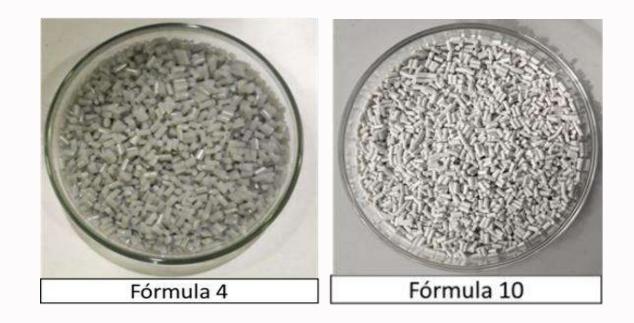
During the reprocessing of rPET and its usage as product, it may occur oxidation and degradation caused by heat and sunlight

□ Special additives:

Antioxidants^[11;12]

Inhibit the degradation of polymers through the removal of free radicals formed when polymers oxidize

Thermal / Light Stabilizers^[11;12]



04 Experimental Results

Formulations:

- rPET
- Chain extender
- Masterbatch Antioxidant/UV protection
- Bio-PET
- Masterbatch Soft-touch
- Masterbatch Antimicrobial

Formulation	F1 (%)	F2 (%)	F3 (%)	F4 (%)	F5 (%)	F6 (%)	F7 (%)	F8 (%)	F9 (%)	F10 (%)	F11(%)
rPET 2509	100	97	67	63							
rPET 2903					63	67	100				
rPET 12000								100	97	64	75
Chain extender		1	1	1	1	1			1	1	1
Master. (antioxidant/thermal-UV protection)		2	2	2	2	2			2	2	2
Bio-PET (20% biobased)			30	30	30	30				30	30
Master. Soft-touch				4	4						4
Master. Antimicrobial										3	3

Financiado pela União Europeia NextGenerationEU

Experimental Results

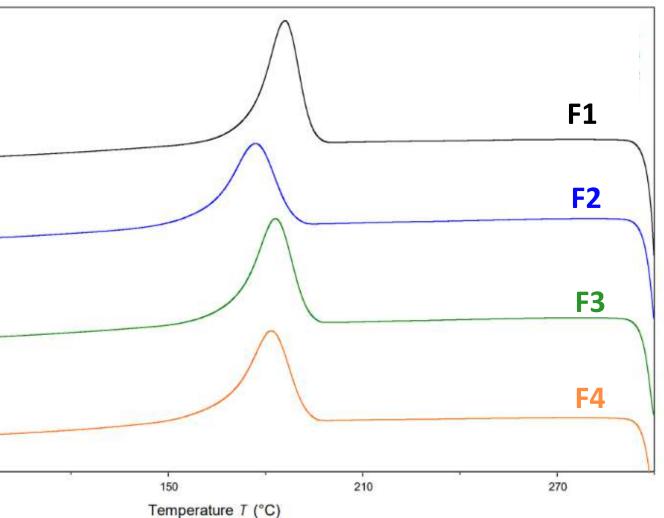
	Formulation	F1 (%)	F2 (%)	F3 (%)	F4 (%)	F5 (%)	F6 (%)	F7 (%)	F8 (%)	F9 (%)	F10 (%)	F11(%)
Selection	rPET 2509	100	97	67	63							
	rPET 2903					63	67	100				
	rPET 12000								100	97	64	75
	Chain extender		1	1	1	1	1			1	1	1
	Master. (antioxidant/thermal-UV protection)		2	2	2	2	2			2	2	2
	Bio-PET (20% biobased)			30	30	30	30				30	30
	Master. Soft-touch				4	4						4
	Master. Antimicrobial										3	3
	ntrinsic viscosity (IV)	of rPET	formula	tions								

Formulation	Bio-PET	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
Mean IV (dl/g)	0.77	0.71	0.80	0.69	0.7	0.52	0.47	0.43	0.61	0.75	0.65	0.61
Std	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00

- Formulations of rPET 2903 with low IV
- Chain extender, antioxidant and soft-touch additives led to an increase in the IV and molecular weight
- Formulations of rPET 2509 with VI close to virgin PET

VI values according to literature ^[13]:

- virgin PET: ≈0.7 dl/g;
- rPET $\approx 0.5 \text{ dl/g}$


04 Experimental Results – Differential scanning calorimetry (DSC)

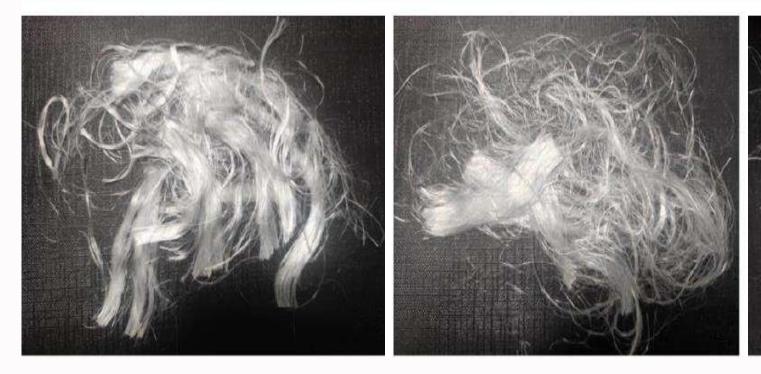
Formulation	F1 (%)	F2 (%)	F3 (%)	F4 (%)
rPET 2509	100	97	67	63
rPET 2903				
rPET 12000				
Chain extender		1	1	1
Master. (antioxidant/thermal-UV protection)		2	2	2
Bio-PET (20% biobased)			30	30
Master. Soft-touch				4

2nd heating 2.5 Heat Flow (Normalized) Q (W/g) 1.5 0.5 -0.5 90 30 Exo Up

2nd heating

Thermal tr	ransition	Bio-PET	F1	F2	F3	F4
Glass transition	T _{1/2,g} (°C)	82	82	80	82	82
	T _{p,m} (°C)	247	245	246	245	246
Melting	∆H _m (J/g)	38	39	43	39	41
	T _{p,c} (°C)	167	178	185	178	182
Crystallization	ΔH _c (J/g)	21	36	40	36	39
	Xc (%)	27	28	31	28	29

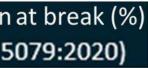
Additives (Chain extender/ Antioxidant/ Soft-touch) led to an increase in the crystallization temperature



04 Experimental Results

Production of melt-spun fibers

Formulation	F1 (%)	F2 (%)	F3 (%)	F4 (%)
rPET 2509	100	97	67	63
rPET 2903				
rPET 12000				
Chain extender		1	1	1
Master. (antioxidant/thermal-UV protection)		2	2	2
Bio-PET (20% biobased)			30	30
Master. Soft-touch				4


Short Fibers: F2

Mechanical characterization

Formulation	Stress at break (CN) (EN ISO 5079:2020)	Elongation (EN ISO 5
F1	6,10±0,51	245
F3	9,25±0,40	109
F4	6,58±0,52	301

Short Fibers: F3

Short Fibers: F4

5±25

9±8,4

1±51

Financiado pela União Europeia NextGenerationEU

Conclusions and Future work

- This study presented new formulations of recycled PET, bio-PET and additives that improved the intrinsic viscosity of rPET
- Innovative formulations are indicative of a better molecular weight and mechanical \bullet performance of rPET, showing great potential to form fibers for non-woven textiles
- Future work includes the production of non-woven textiles, evaluation of their mechanical properties, ageing and antimicrobial effectiveness as well as tests on an industrial scale.

ACKNOWLEDGMENT

This presentation was developed within the scope of the Innovation Pact Sustainable Plastics by the Consortium 'PPS3 -RECPET,' co-financed by NextGenerationEU, through the 'Business Innovation Agendas' investment from the Recovery and Resilience Plan (RRP)

Magda Silva

Extrusion, Compounding and Advanced Materials E-mail: magda.silva@piep.pt

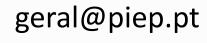
(351) 253 510 050 geral@piep.pt

PIEP - Pólo de Inovação em Engenharia de Polímeros, Universidade do Minho, Campus de Azurém, Edifício 15 4800-058 Guimarães, Portugal

🗅 in 🖸 🄰

 \bigcirc

Thank you for your attention!


Financiado pela União Europeia

NextGenerationEU

Thank you

253 510 050

www.piep.pt

University of Minho, Campus de Azurém, Edifício 15 4800-058 Guimarães - Portugal

